# Extractive Text-Based Summarization of Arabic videos: Issues, Approaches and Evaluations

M.A. Menacer, C.E. González-Gallardo K. Abidi D. Fohr D. Jouvet D. Lan-

glois O. Mella F. Sadat J.M. Torres-Moreno and K. Smaïli

Nancy, France

16, 17 October 2019



# Introduction: Context and objectives

- I How a user can access to the information which is expressed in a foreign language?
- Understanding a video in a foreign language is first step to answer this question.



 Develop and evaluate a system for automatic summarization of Arabic videos.

# Introduction: Context and objectives

- Item a user can access to the information which is expressed in a foreign language?
- Understanding a video in a foreign language is first step to answer this question.



 Develop and evaluate a system for automatic summarization of Arabic videos.

# Automatic Speech Recognition -ASR-

Modern Standard Arabic and dialect cases

# ASR: From the signal to the text



# ASR: From the signal to the text



◎ Extract the acoustic features (MFCC, PLP ...).

# ASR: From the signal to the text



◎ Extract the acoustic features (MFCC, PLP ...).

### Acoustic Modeling:

• DNN-HMM model is used for the acoustic modeling.



# ASR: Modern Standard Arabic case

◎ Acoustic modeling: DNN-HMM acoustic modeling



### Acoustic modeling: DNN-HMM acoustic modeling



- 44 hours of MSA spoken data are used for training the neural network: Nemlar<sup>a</sup> and NetDC<sup>b</sup>;
- 440-dimensional input layer (11\*40-dimensional acoustic features);
- 6 hidden layers with 2048 nodes by layer;
- and 4264-dimensional output layer (number of HMM states).

<sup>a</sup>http://catalog.elra.info/product\_info.php?p
<sup>b</sup>http: 4

(/catalog also info/product info php?producto

### Language modeling:

#### • n-gram model is used for the language modeling.



$$P^{FinalLM}(W) = \lambda_1 P^{LM1}(W) + \lambda_2 P^{LM2}(W)$$
(2)

(1)

5

### o Pronunciation modeling:

- Select 100k most frequent words from the textual data.
- Use an external lexicon<sup>1</sup> to generate pronunciation.

|     | #Words | #Entries |
|-----|--------|----------|
| MSA | 95K    | 485K     |

Table: Statistics about the MSA lexicon.

<sup>&</sup>lt;sup>1</sup>http://alt.qcri.org/resources/msa-dictionary/

- This Algerian dialect is highly impacted by the MSA and French language.
- The Algerian dialect is mainly spoken, there are no data to train the different model.

- This Algerian dialect is highly impacted by the MSA and French language.
- The Algerian dialect is mainly spoken, there are no data to train the different model.
- Explore data that impact the Algerian dialect, namely MSA and French to enhance models for the dialect.

Textual data collection:

• two corpora containing Algerian dialects are constituted: PADIC<sup>2</sup> and CALYOU<sup>3</sup> corpora.

| Corpus | #Words | #Unique words |
|--------|--------|---------------|
| CALYOU | 10M    | 512k          |
| PADIC  | 25k    | 6.6K          |

Table: Statistics about trxtual data.

<sup>2</sup>K. Meftouh, S Harrat, and Kamel Smaïli. "PADIC: extension and new experiments". In: 7th International Conference on Advanced Technologies ICAT. Antalya, Turkey, Apr. 2018. URL:

https://hal.archives-ouvertes.fr/hal-01718858.

<sup>3</sup>karima Abidi, Mohamed amine Menacer, and Kamel Smaili. "CALYOU: A Comparable Spoken Algerian Corpus Harvested from YouTube". In: *18th Annual Conference of the International Communication Association (Interspeech)*. 2017.

### Spoken data:

• The aligned dialectal spoken corpus is created by having native Algerian people reading 4.6k sentences extracted from PADIC and CALYOU corpora.

| Subset | Dur             | Female spkrs | Male spkrs | Total spkrs |
|--------|-----------------|--------------|------------|-------------|
| Train  | <b>2</b> 40 min | 1            | 3          | 4           |
| Dev    | 40 min          | 1            | 1          | 2           |
| Test   | 75 min          | 1            | 2          | 3           |

Table: Some characteristics of the dialectal corpus.

- Acoustic modeling:
  - The dialectal corpus is quite small to train a robust AM.



#### O Acoustic modeling:

• The dialectal corpus is quite small to train a robust AM.



10

### O Language modeling:

• The LM is a linear interpolation of 4 LMs.



- O Pronunciation modeling:
  - Adapt the approach proposed in<sup>4</sup> to generate the pronunciation of dialectal words.

| Corpus | #Words | #Entries |
|--------|--------|----------|
| MSA    | 95K    | 485K     |
| CALYOU | 50K    | 50K      |
| PADIC  | 6.6K   | 6.6K     |
| Total  | 123K   | 538K     |

Table: Statistics about lexicons.

<sup>&</sup>lt;sup>4</sup>Salima Harrat et al. "Grapheme to phoneme conversion-an arabic dialect case". In: *Spoken Language Technologies for Under-resourced Languages*. 2014.

The test is carried out on the 75 min of the dialectal data and 5 hours of MSA data:

| System  | AM          | LM       | Lex      | WER_dial (%) | WER_MSA (%) |
|---------|-------------|----------|----------|--------------|-------------|
| ASR-MSA | MSA         | MSA      | MSA      | 78.5         | 14.02       |
| $S_1$   | 4h dial     | MSA+dial | MSA+dial | 40           | /           |
| $S_2$   | MSA+Fr+dial | MSA+dial | MSA+dial | 37.7         | /           |

Table: Performance of the ASR systems on the Test dialectal corpus.

### Automatic text summarization

Sentence Boundary Detection

# Sentence Boundary Detection: Architecture



- The CNN is trained on 70M words subset extracted from the Gigaword corpus.
- ◎ The evaluation is carried out on 10.5M samples.

| class            | Precision | Recall | F1-score |
|------------------|-----------|--------|----------|
| <seg></seg>      | 0.797     | 0.612  | 0.684    |
| <no seg=""></no> | 0.972     | 0.989  | 0.98     |

Table: Sentence Boundary Detection performance.

### Automatic text summarization

Automatic text summarization

**Document preprocessing** The text is represented in a suitable space model.

Global topic vector An average document vector is built.

Lexical weight A lexical vector is built for each sentence.

**Sentence scoring** A score for each sentence is calculated using their proximity with the global topic vector and their lexical weight.

$$score(s_i) = (\overrightarrow{s} \times \overrightarrow{b}) \times \overrightarrow{a} = \frac{1}{NP} (\sum_j s_{i,j} \times b_j) \times a_i$$
 (3)

16

Sentence selection The summary is generated concatenating the sentences with the highest scores following their order in the original document.

<sup>5</sup>Juan-Manuel Torres-Moreno. "Artex is AnotheR TEXt summarizer". In: *CoRR* abs/1210.3312 (2012). arXiv: 1210.3312. URL:

### Tests ans results

Evaluation

# Evaluation: video corpus

- French, English and Arabic videos are collected according to a set of controversial Twitter Hashtags such as #سوريا#, هقوق\_الرية.
- More than 1.5K Arabic videos (>100h) are collected. they come from channels such as AlArabiya, France24, EchoroukTV, EnnaharTV, BBC, etc.

| Count                                   | Value |
|-----------------------------------------|-------|
| Videos                                  | 27    |
| Summary per Video                       | 3     |
| Channel TV                              | 3     |
| Evaluators                              | 3     |
| Size of the shortest summary (in words) | 52    |
| Size of the longest summary (in words)  | 394   |

Table: Some figures concerning the subjective evaluation.

## Evaluation: Subjective evaluation, MSA case

| 1                | 2                       | 3                             | 4               | 5                 |
|------------------|-------------------------|-------------------------------|-----------------|-------------------|
| Incomprehensible | Only some events of the | A substantial proportion      | Very good       | Excellent summary |
| summary          | original video are      | of the events in the original | summary and     |                   |
|                  | found in the summary    | video are in the summary      | the text        |                   |
|                  | and overall the text    | and overall the               | is very correct |                   |
|                  | is incomprehensible     | text is understandable        |                 |                   |

 $Figure: \ {\it Rating scale for the automatic summarization system assessment}.$ 



Figure: Rating scale for the automatic speech recognition system assessment.

### Evaluation: Subjective evaluation, MSA case



Figure: The Box plot corresponding to the subjective evaluation of the Arabic ASR and the automatic summarization systems on MSA data.

## Evaluation: Subjective evaluation, Algerian dialect case



Figure: The number of responses for each score of the subjective assessment of dialectal data with MSA-ASR system. Figure: The number of responses for each score of the subjective assessment of dialectal data with the adapted ASR system.

- What is the relationship between the scores of the summary *EvalSum* and:
  - the number of words (*ASRWord*);
  - the score of the ASR system (*ASRScore*);
  - and the number of words of the summary (*SumWord*).
- Use the multiple linear regression through the coefficient of determination  $(R^2)$ .
- On our data-set of 243 examples,  $R^2 = 0.310$ , this indicates that 31% of the dispersion is explained by the regression model.

# Evaluation: Factors impacting summary

•  $H_0: a_1 = a_2 = a_3 = 0$  and  $H_1$  at least one of the  $a_i$  is different from 0.



# Conclusion

 Describe the development and the evaluation of an automatic video summarization system.



- The ASR system was developed for MSA and adapted for the Algerian dialect.
- Each component performs well separately.
- Several parameters impact the summary, namely the number of words in the original/summarized video and the output of the ASR system.

